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Abstract. For each positive integey, we construct a one-parameter family of spectral curves
for D, symmetric charge 2+ 1 SU(2) BPS monopoles. Each spectral curve is reducible, and

is the union of a line withg elliptic curves. We show that such a monopole is related gegap

Lamé potential. Other symmetric monopoles, related to elliptic curves, are also shown to have
a similar correspondence. A suggestion is made on how this observation may be of use in the
construction of new spectral curves.

1. Introduction

The subject of this paper is static SU(2) BPS monopoles, which are topological soliton
solutions of a Yang—Mills—Higgs gauge theory in three-space dimensions. The Bogomolny
equation for static monopoles is a reduction of the self-dual Yang—Mills equation, and hence
a variety of twistor approaches may be taken. Rather than constructing the monopole itself,
we compute the twistor data to which it is equivalent, namely its spectral curve and Nahm
data. For each odd integer> 1, we exhibit a spectral curve which is a one-parameter
deformation of the known spectral curve of an axisymmeirimonopole. Physically, this
spectral curve describesmonopoles equally spaced along a line through the origin. The
parameter in the spectral curve is related to the distance between neighbouring monopoles.
This configuration has dihedrd), symmetry. The spectral curve is reducible, and is the
union of a line withg elliptic curves, where: = 2g + 1.

We relate such a monopole, via its Nahm data and an observation due to Ward [14], to
a Lane equation. We find that the potential igagap potential where again = 2g + 1.
Such potentials are well studied in connection with soliton solutions of the periodic KdV
equation [12].

Finally, we show that some recently discovered symmetric monopoles [9], related to
elliptic curves, are associated with 1-gap léamotentials. This leads to a suggestion on
how this observation may be of use in the construction of new spectral curves.

2. Spectral curves and Nahm data

A given multi-monopole, being a topological soliton, has an associated integer winding
numbern, which may be thought of as giving the number of monopoles. It also equals the
total magnetic charge of the monopole, in units af 4Ve refer to a monopole of charge

as ann-monopole. In this paper we are mainly concerned with two twistor approaches to
monopoles, which we review in the following.

1 E-mail address: P.M.Sutcliffe@ukc.ac.uk
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Hitchin has shown [5, 6] that monopoles correspond to certain algebraic curves, called
spectral curves, in the holomorphic tangent bundle to the Riemann spi@fe Tet ¢ be
the standard inhomogeneous coordinate on the base spacgthedibre coordinate, then
ann-monopole corresponds to a curve of the form

N0 @) + 0 () A+ a1+ an(2) =0 (2.1)

where, for 1< r < n, a,(¢) is a polynomial in¢ of maximum degree 2which satisfies
the reality condition

1
a(§) = (-1'¢a, (—{) 2.2)

In addition the algebraic curve must satisfy a difficult non-singularity constraint [5].
For a single monopolen(= 1) the non-singularity constraint is automatically satisfied,
and the spectral curve is given by

N — (X1 +ix2) + 2x3¢ + (x1 — ix2)¢* =0 (2.3)

where(x1, x2, x3) is the monopole’s position ii®3. We shall follow the notation of [4] and
later refer to such a spectral curve as a star.

Letn = 2g+1, whereg is a positive integer, then there is an axisymmetrimonopole
with spectral curve [5]

8
n [ [n?+°x%¢? =0 (2.4)
=1

One may think of this spectral curve as describingionopoles, which are all positioned
at the origin (there are no spherically symmetric monopoles:fer 1). In this paper we
shall present a one-parameter deformation of the spectral curve (2.4), which corresponds to
pulling apart the individual 2+1 monopoles so that the axial symmetry is broken to dihedral
symmetryD,. This is achieved with the aid of the Atiyah—Drinfeld—Hitchin—Manin—Nahm
(ADHMN) construction, which we now briefly describe.

The ADHMN construction [11, 6] is an equivalence betweemanonopole and Nahm
data(73, T», T3), which are three x n matrices which depend on a real parameter|0, 2]
and satisfy the following:

(i) Nahm’s equation

ar; 1
ds = éfijk[Tj» Til; (2.5)

(ii) T;(s) is regular fors € (0, 2) and has simple poles at= 0 ands = 2;

(i) the matrix residues of Ty, T», T3) at each pole form the irreducibledimensional
representation of SU(2);

V) Ti(s) = =T, (s);

W) Ti(s) = T/ 2—s).

Equation (2.5) is equivalent to a Lax pair and hence there is an associated algebraic
curve, which is in fact the spectral curve. Explicitly, the spectral curve may be read off
from the Nahm data as the equation

det(n + (T1 +iT2) — 2iTs¢ + (T1 — iT2)¢?%) = 0. (2.6)

We shall now present the Nahm data for aby symmetric monopoles, and hence
compute the spectral curves.

As above, letg be an integer such that = 2¢ + 1. Let p1, p2, p3 be three anti-
Hermitiann x n matrices of the standard spégnirreducible representation of su(2) satisfying
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[p1, p2] = 2p3 etc. Then, motivated by Dancer’s work on SU(3) monopoles [2], we take
our Nahm data to be given by

Kdn(Ks, k) K Kcn(Ks, k)
B (N 3T T 2snks k) P
where siiu, k) etc denote the Jacobi elliptic functions with modutuandk is the complete
elliptic integral of the first kind with modulug. It is a simple matter to check that for
0 < k < 1 the properties (i) to (iv), required by the Nahm data, are satisfied. In the basis
we have chosen, the last requirement (v) is not explicitly satisfied, but we can appeal to a
general argument (see [4]) that a basis exists in which (v) is satisfied.

Using (2.6) we compute the associated spectral curves to be

1= (2.7)

8
n| [n? + PK?@c? — k22 + )P}y = 0. (2.8)
=1

Now we have the spectral curve, we can examine the symmetry of the corresponding
n-monopole. LetR;, i = 1, 2, 3, denote the generator of rotations syaround thex;-axis.

Then R3 acts on TCP! as

Under this transformation the spectral curve (2.8) is clearly the same curve, so it has cyclic
C, symmetry around thes-axis. The rotationR; acts on TP! as

Ri(n, ¢) = (=n/¢% 1/¢) (2.10)

and again it can be seen that the curve (2.8) is the same curve under this transformation.
This R; symmetry extends the cyclic symmet€y to dihedral symmetryD,. Hence we

have demonstrated that, for eaghthe curve (2.8) is the spectral curve of a charget2l
monopole withD, symmetry. Note that we also have an additional reflection symmetry

J 1 xp = —x5, which acts on TP? as

Jn,¢) = (1,¢) (2.11)

as a consequence of the fact that all coefficients in the spectral curve are real.

Let us now examine two special cases for this spectral curve. The first is kvhed,
so thatKk = n/2, and the curve becomes that of the axisymmetrimonopole given by
(2.4), withx3 the axis of symmetry. For this value bfeach of theg elliptic curves in (2.8)
becomes a rational curve, so that the spectral curve is the unies@dtions of the bundle
TCP! — CP. The second special case is the limit in which> 1. In this limit we have
that K — oo, so that the spectral curve (2.8) becomes asymptotic to the product of stars

8

[[n+ik@2-1)=0. (2.12)

I=—g
This describes 2+ 1 well separated monopoles along theaxis. One monopole is at the
origin and the remaininggmonopoles are equally spaced along the positive and negative
x1-axis, with the distance between any two neighbouring monopoles being equéal to
Given these two limiting cases it is natural to think of the paramieiarthe spectral curve
as determining the distance between neighbouring monopoles.

Note that a similar family of spectral curves can be calculated ger symmetric
monopoles of even charge by taking a half odd integer spin representation of su(2). For the
2-monopole case the corresponding results were obtained some time ago [1] and the form
of the Nahm data is very similar to that which is used here (2.7) to constrominopoles.

1 | thank one of the referees for drawing this to my attention.
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In the next section we describe how abg symmetric monopoles are related to finite-
gap Langé potentials.

3. The Lamé equation

The Lan® equation [3,12] is the simplest example of a finite-gap Hill's equation. In Jacobi
form it is written as

d*y 2

Q2 " 8e Tk srt(u, k) = —Ey (3.13)
whereg and E are constants and we use the same notation for Jacobi elliptic functions and
integrals as in the previous section.

If g is a positive integer then the operator appearing in (3.13) has a finite number of gaps
in its spectrum, in fact of them, as explained below. The elliptic potential appearing in the
above operator is periodic with periok2 The eigenfunction/ is a Bloch eigenfunction
if it is an eigenvector of the translation operator> u + 2K, i.e.

VU + 2K) = 5Py (u) (3.14)

where p, which is a function ofE, is the quasi-momentum. Now the Bloch eigenfunction
only belongs to the Bloch spectrum of the operator in (3.13) if the quasi-momentum is real.
Hence there are forbidden bands for the allowed valueg,aforresponding to gaps in the
spectrum of the operator in the L&nequation. The result of interest is thagifs a positive
integer then the number of gaps in the spectrum is finite, and is in fact eqgal The
elliptic potential in (3.13) is then called grgap potential and the Bloch eigenfunction is a
mereomorphic function defined on a Riemann surface of ggnusheseg-gap potentials
arise in the solution of the periodic KdV equation [12], and are associated wighsbéton
solutions, which may be constructed using algebraic—geometric methods.

The connection between monopoles and the &aquation is provided by the Nahm
data. Ward has observed [14] that the léamquation can be written in terms of the
composition of two first-order matrix operators, the coefficients of which satisfy Nahm’s
equation (2.5). Hence to each monopole, we can associate its Nahm data, construct the
first-order matrix operators, and form their composition to arrive at ad aguation. In
this way we shall see how thB, symmetric monopoles of the previous section are related
to g-gap potentials. Note that Ward considered an explicit example of the construction of a
Lamé equation from a particular solution of Nahm'’s equation. However, in his example the
solution of Nahm’s equation did not satisfy the extra conditions ((ii) to (v) of the previous
section) required of the Nahm data. In particular his chosen solution of Nahm’s equation
is regular for alls € [0, 2], and so does not correspond to a monopole.

From the Nahm datérl, T, T3) construct the following lineari2x 2n matrix operator

d .
A:]lzn——l-lT]' ®Oj (315)
ds '
where J, denotes the x n identity matrix ands; are the Pauli matrices. One may consider
(3.15) as a quaternionic operator, then an important cornerstone of the ADHM construction
[11, 6] is that the composition of this operator with its conjugate is real, i.e.

2

n_q o
ds?

A*A = (Jl L T,T,-) ® 1, (3.16)
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so that the imaginary quaternionic part is zero. This is a result of the reality properties of
the Nahm data and the fact that Nahm’s equation (2.5) is satisfied. Hence given Nahm data
it is natural to associate it with the linear matrix differential equation
d?y
]ln@+TjTjw=0 (3.17)
for the n-vectory,. This equation may be viewed ascopies of the Lard equation.
Let us now see how all this works for the Nahm data (2.7) of a chagge2monopole
with D, symmetry. Using standard identities between Jacobi elliptic functions it is a simple
task to show that in this case
K2ng(Ks, k)
T ==

Now p?+p3+p3 is the quadratic Casimir for the spinrepresentation of §@) so it is equal
to —4g(g+1)1,. Furthermore, n&+iK’, k) = ksn(u, k), whereK’ is the complete elliptic
integral of the first kind with argument given by the complementary modtilas+/1 — k2.
Using these two results, and defining the variable Ks — iK', we have that

T,T; = —K%k*g(g + Dsrt(u, k)1, — 2K2(Kp? + p3). (3.19)
Hence equation (3.17) becomes

KZ
(0F + 05 +p3) — 4 (k2o + p). (3.18)

du?

where M is the constant matri)e4(k2pf + p§). This equation is: copies of the Lara
equation with gg-gap elliptic potential.

In summary, we have constructed, for each positive intggarfamily of spectral curves
for a D, symmetric charge 2+ 1 monopole, each of which is reducible and is the union of
a line with g elliptic curves. We have then shown how each of these monopoles is related
to ag-gap Lan& potential.

We now consider another example, for which it will be more convenient to write the
Lamé equation in its Weierstrass form

(G s )
1, (=L —g(g+ Dk>srf(u, k)y | = —Myr (3.20)

d?yr
—— — 8 +Dpwy =—-Ey (3.21)
du?
wherep (1) is the Weierstrass elliptic function satisfying
P =4p —e))(p — e (9 — e3) (3.22)

with ” denoting differentiation with respect to the argument.

The family of monopoles we now consider were recently constructed in [9] and consist
of a charge 3-monopole which is invariant under a combinedr@tation and inversion.
We computed a one-parameter family of such monopoles, which includes the axisymmetric
3-monopole and the tetrahedral 3-monopole [4, 8]. Explicitly, the family of spectral curves
is given by

n® — 6(a® — HY3%2 % + 2ica(® - 1) =0 (3.23)

wherea € R is the parameter, and is a known function otz. Special cases include the
axisymetric 3-monopolex(= 0, k = 7/(2%%./3)) and the tetrahedral 3-monopole£ +2,
k =T(1/6)I'(1/3)/(4/37)).

Now if this monopole is related to g-gap potential, it would be useful to predict the
number of gaps directly from the spectral curve. In the previous example we saw that the
number of gapg was equal to the number of elliptic curves whose union (together with a
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line) gave the spectral curve. The generimonopole spectral curve is irreducible and has
genus(n — 1) [6], so the 3-monopole spectral curve (3.23) has genus 4. However, it is a
particularly symmetric curve, since the 3-monopole has the symmetry gfogenerated

by a reflection symmetry in the; = x, plane,o : (x1, x2, x3) — (x2, x1, x3), and by

a combined 90 rotation and inversioril : (xq, x2, x3) — (x2, —x1, —x3). The twisted
inversion operatoZ and the reflection operater act on TCP! as

T, ¢) = (—i7i/¢%i/¢) (3.24)
o(n,¢) = (in,i¢). (3.25)

We now show, by computing Euler characteristics, that the quotient of the spectral curve
(3.23) by G is an elliptic curve. By the Riemann—Hurwitz formula the Euler characteristic
x of the spectral curve is related to the Euler characterjgtaf the quotient curve by

x =|GI¥ — b (3.26)

whereb is the total branching. The symmetry grodp acts freely except when = 0,
when there are fixed points at= 0 and¢ = co. Each of these fixed points has a stabilizer
of order 4, hence the total branchihg= 2(4 — 1) = 6. Since the spectral curve has genus
4 we have thafy = —6 giving

—6=|G|7—6 (3.27)

so thaty = 0 and the quotient curve is elliptic.

Given the previous example, where the spectral curve consistedetifptic curves
and the Lard potential hag; gaps, the fact that the quotient curve is elliptic suggests that
perhaps this family of monopoles is related to a 1-gap potential. We now show that this is
indeed the case.

The Nahm data for this family of monopoles has the form [9]

0 e 0 0 d’ 0
T, = iﬂ«fZ[e“’ 0 é":| T, = ﬁ\/i[—e‘i" 0 e“e}
0 e 0 0 —-e? 0
icosp 0 —sing
T3 = 2x [ 0 0 0 } (3.28)
sing 0 —icos¢

whereq, 8, 6, ¢ are some known functions ef To construct the associated Laraquation
we compute that

a?+p2 0 0 0 0O
@@:-4[ 0 2p2 0 :|=—4(a2+/32)1l3+4(a2—ﬁ2)|:0 1 o]
0 0 o?+p2 0 00

(3.29)

In the above the decomposition, into a piece proportional to the identity and a remainder,
reflects the fact that we require the same Egmotential for each copy of the Lanequation.

Now it is clear that to obtain a Laénequation the combinatiom?® + g2 must be (up to

a constant) given by an elliptic function, and the remainder coefficiént g2 must be
constant. The explicit solution (from [9]) is

a(s) = 5V (ks) + (@ = I (3.30)

B = 5\ (ks) - a2 — Y2 (3.31)
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whereg is the Weierstrass elliptic function satisfying

02 =493 — 3(a? — H¥3p — 4. (3.32)
Thus
2 2 _ 4173
a? + B2 = % <5@ n (“4)> (3.33)
2
w?— g2 = 3%(612 _ gyl (3.34)

and we have the required behaviour. Note that in solving Nahm'’s equation to obtain the
solutions (3.30) it is a non-trivial exercise to find the appropriate combination of functions
which obey a Weierstrass equation. However, using the relation to & lpatential we

have seen that the appropriate combinatioadf- 82 emerges naturally. Finally, defining

the variablex = «s equation (3.17) becomes the 1-gap l&apguation

d2
1, (‘” ~ 2 <u>w) — My (3.35)

du?

whereM = }(a® — #H3diag(—1, 2, —1) is a constant matrix.

This example suggests that constructing the correspondingéLaquation for a
monopole may be of use in solving Nahm’s equation, since it could naturally lead to a
simplifying choice of variable combinations. As an example we consider the Nahm data
for a charge 3-monopole with cycli€; symmetry. It is known that the Nahm data has the

form
0 0 a» d 0 0
T1+iT2=|:Ol3 0 0i| T3=i|:0 d> 0i| (336)

00[1 0 0 Odg

and Nahm’s equation is equivalent to the 3-particle Toda chain [7]. However, despite the
fact that these equations are a much-studied integrable system, it has not as yet proved
tractable in this case to find the explicit solution of Nahm’s equation which satisfies all the
required boundary conditions.

With a view to constructing the associated Laequation we compute that

1 247+ af + o} 0 0
Tjrj:_z[ 0 242 + of + o5 0 } (3.37)
0 0 22 +a?+ad

We can make this proportional to the identity matrix by the obvious choite=2 o?,
i = 1,2,3. This reduction simplifies the equations sufficiently to be integrated explicitly,
in terms of an elliptic function, and results in the spectral curve

73 +iT(1/6)3T (1/3)3/(n¥2338/2) (¢ + i5v/2¢3 + 1) = 0. (3.38)

It can be shown that this is the spectral curve of the tetrahedral 3-monopole [4], after a
rotation so that the tetrahedral monopole has a cy€jcsymmetry around thes-axis.

So, by considering the associated l&amquation we have been lead to a simplified case.
Perhaps other cases may be constructed in a similar fashion.
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4. Conclusion

A new family of spectral curves, for odd charge monopoles with dihedral symmetry, has
been computed and a relation with finite-gap léapotentials investigated. It would be
interesting to see if the connection between monopolesgagap potentials could be made
more formal. In particulag-gap potentials can be associated, via the Novikov equation
[13,12], to algebraic curves. Perhaps a link between these curves and the spectral curves
of the monopole could be found.

Note that in general the problem of determining which monopoles correspond to finite-
gap potentials, and conversely which finite-gap potentials can arise, is an open problem.

Another aspect to investigate is the role that could be played by thé& lpmtynomials
[3] within the ADHMN construction.

Finally, the simplest example studied in this paper, that of three monopolesDyith
symmetry, can be shown to be a totally geodesic submanifold of the 3-monopole moduli
space. This work will be presented elsewhere [10].
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