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Symmetric monopoles and finite-gap Laḿe potentials
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Abstract. For each positive integerg, we construct a one-parameter family of spectral curves
for D2 symmetric charge 2g + 1 SU(2) BPS monopoles. Each spectral curve is reducible, and
is the union of a line withg elliptic curves. We show that such a monopole is related to ag-gap
Lamé potential. Other symmetric monopoles, related to elliptic curves, are also shown to have
a similar correspondence. A suggestion is made on how this observation may be of use in the
construction of new spectral curves.

1. Introduction

The subject of this paper is static SU(2) BPS monopoles, which are topological soliton
solutions of a Yang–Mills–Higgs gauge theory in three-space dimensions. The Bogomolny
equation for static monopoles is a reduction of the self-dual Yang–Mills equation, and hence
a variety of twistor approaches may be taken. Rather than constructing the monopole itself,
we compute the twistor data to which it is equivalent, namely its spectral curve and Nahm
data. For each odd integern > 1, we exhibit a spectral curve which is a one-parameter
deformation of the known spectral curve of an axisymmetricn-monopole. Physically, this
spectral curve describesn monopoles equally spaced along a line through the origin. The
parameter in the spectral curve is related to the distance between neighbouring monopoles.
This configuration has dihedralD2 symmetry. The spectral curve is reducible, and is the
union of a line withg elliptic curves, wheren = 2g + 1.

We relate such a monopole, via its Nahm data and an observation due to Ward [14], to
a Laḿe equation. We find that the potential is ag-gap potential where againn = 2g + 1.
Such potentials are well studied in connection with soliton solutions of the periodic KdV
equation [12].

Finally, we show that some recently discovered symmetric monopoles [9], related to
elliptic curves, are associated with 1-gap Lamé potentials. This leads to a suggestion on
how this observation may be of use in the construction of new spectral curves.

2. Spectral curves and Nahm data

A given multi-monopole, being a topological soliton, has an associated integer winding
numbern, which may be thought of as giving the number of monopoles. It also equals the
total magnetic charge of the monopole, in units of 4π . We refer to a monopole of chargen
as ann-monopole. In this paper we are mainly concerned with two twistor approaches to
monopoles, which we review in the following.

† E-mail address: P.M.Sutcliffe@ukc.ac.uk
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Hitchin has shown [5, 6] that monopoles correspond to certain algebraic curves, called
spectral curves, in the holomorphic tangent bundle to the Riemann sphere TCP1. Let ζ be
the standard inhomogeneous coordinate on the base space andη the fibre coordinate, then
an n-monopole corresponds to a curve of the form

ηn + ηn−1a1(ζ )+ · · · + ηran−r (ζ )+ · · · + ηan−1(ζ )+ an(ζ ) = 0 (2.1)

where, for 16 r 6 n, ar(ζ ) is a polynomial inζ of maximum degree 2r which satisfies
the reality condition

ar(ζ ) = (−1)rζ 2rar

(
− 1

ζ

)
. (2.2)

In addition the algebraic curve must satisfy a difficult non-singularity constraint [5].
For a single monopole (n = 1) the non-singularity constraint is automatically satisfied,

and the spectral curve is given by

η − (x1 + ix2)+ 2x3ζ + (x1 − ix2)ζ
2 = 0 (2.3)

where(x1, x2, x3) is the monopole’s position inR3. We shall follow the notation of [4] and
later refer to such a spectral curve as a star.

Let n = 2g+1, whereg is a positive integer, then there is an axisymmetricn-monopole
with spectral curve [5]

η

g∏
l=1

{η2 + l2π2ζ 2} = 0. (2.4)

One may think of this spectral curve as describingn monopoles, which are all positioned
at the origin (there are no spherically symmetric monopoles forn > 1). In this paper we
shall present a one-parameter deformation of the spectral curve (2.4), which corresponds to
pulling apart the individual 2g+1 monopoles so that the axial symmetry is broken to dihedral
symmetryD2. This is achieved with the aid of the Atiyah–Drinfeld–Hitchin–Manin–Nahm
(ADHMN) construction, which we now briefly describe.

The ADHMN construction [11, 6] is an equivalence between ann-monopole and Nahm
data(T1, T2, T3), which are threen×n matrices which depend on a real parameters ∈ [0, 2]
and satisfy the following:

(i) Nahm’s equation

dTi
ds

= 1

2
εijk[Tj , Tk]; (2.5)

(ii) Ti(s) is regular fors ∈ (0, 2) and has simple poles ats = 0 ands = 2;
(iii) the matrix residues of(T1, T2, T3) at each pole form the irreduciblen-dimensional

representation of SU(2);
(iv) Ti(s) = −T †

i (s);
(v) Ti(s) = T ti (2 − s).
Equation (2.5) is equivalent to a Lax pair and hence there is an associated algebraic

curve, which is in fact the spectral curve. Explicitly, the spectral curve may be read off
from the Nahm data as the equation

det(η + (T1 + iT2)− 2iT3ζ + (T1 − iT2)ζ
2) = 0. (2.6)

We shall now present the Nahm data for ourD2 symmetric monopoles, and hence
compute the spectral curves.

As above, letg be an integer such thatn = 2g + 1. Let ρ1, ρ2, ρ3 be three anti-
Hermitiann×n matrices of the standard sping irreducible representation of su(2) satisfying
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[ρ1, ρ2] = 2ρ3 etc. Then, motivated by Dancer’s work on SU(3) monopoles [2], we take
our Nahm data to be given by

T1 = −Kdn(Ks, k)

2sn(Ks, k)
ρ1 T2 = − K

2sn(Ks, k)
ρ2 T3 = −Kcn(Ks, k)

2sn(Ks, k)
ρ3 (2.7)

where sn(u, k) etc denote the Jacobi elliptic functions with modulusk, andK is the complete
elliptic integral of the first kind with modulusk. It is a simple matter to check that for
0 6 k < 1 the properties (i) to (iv), required by the Nahm data, are satisfied. In the basis
we have chosen, the last requirement (v) is not explicitly satisfied, but we can appeal to a
general argument (see [4]) that a basis exists in which (v) is satisfied.

Using (2.6) we compute the associated spectral curves to be

η

g∏
l=1

{η2 + l2K2(4ζ 2 − k2(ζ 2 + 1)2)} = 0. (2.8)

Now we have the spectral curve, we can examine the symmetry of the corresponding
n-monopole. LetRi , i = 1, 2, 3, denote the generator of rotations byπ around thexi-axis.
ThenR3 acts on TCP1 as

R3(η, ζ ) = (−η,−ζ ). (2.9)

Under this transformation the spectral curve (2.8) is clearly the same curve, so it has cyclic
C2 symmetry around thex3-axis. The rotationR1 acts on TCP1 as

R1(η, ζ ) = (−η/ζ 2, 1/ζ ) (2.10)

and again it can be seen that the curve (2.8) is the same curve under this transformation.
This R1 symmetry extends the cyclic symmetryC2 to dihedral symmetryD2. Hence we
have demonstrated that, for eachg, the curve (2.8) is the spectral curve of a charge 2g + 1
monopole withD2 symmetry. Note that we also have an additional reflection symmetry
J : x2 → −x2, which acts on TCP1 as

J (η, ζ ) = (η̄, ζ̄ ) (2.11)

as a consequence of the fact that all coefficients in the spectral curve are real.
Let us now examine two special cases for this spectral curve. The first is whenk = 0,

so thatK = π/2, and the curve becomes that of the axisymmetricn-monopole given by
(2.4), withx3 the axis of symmetry. For this value ofk each of theg elliptic curves in (2.8)
becomes a rational curve, so that the spectral curve is the union ofn sections of the bundle
TCP1 → CP1. The second special case is the limit in whichk → 1. In this limit we have
thatK → ∞, so that the spectral curve (2.8) becomes asymptotic to the product of stars

g∏
l=−g

{η + lK(ζ 2 − 1)} = 0. (2.12)

This describes 2g+ 1 well separated monopoles along thex1-axis. One monopole is at the
origin and the remaining 2g monopoles are equally spaced along the positive and negative
x1-axis, with the distance between any two neighbouring monopoles being equal toK.
Given these two limiting cases it is natural to think of the parameterk in the spectral curve
as determining the distance between neighbouring monopoles.

Note that a similar family of spectral curves can be calculated forD2 symmetric
monopoles of even charge by taking a half odd integer spin representation of su(2). For the
2-monopole case the corresponding results were obtained some time ago [1] and the form
of the Nahm data is very similar to that which is used here (2.7) to constructn-monopoles†.

† I thank one of the referees for drawing this to my attention.



5190 P M Sutcliffe

In the next section we describe how ourD2 symmetric monopoles are related to finite-
gap Laḿe potentials.

3. The Lamé equation

The Laḿe equation [3, 12] is the simplest example of a finite-gap Hill’s equation. In Jacobi
form it is written as

d2ψ

du2
− g(g + 1)k2sn2(u, k)ψ = −Eψ (3.13)

whereg andE are constants and we use the same notation for Jacobi elliptic functions and
integrals as in the previous section.

If g is a positive integer then the operator appearing in (3.13) has a finite number of gaps
in its spectrum, in factg of them, as explained below. The elliptic potential appearing in the
above operator is periodic with period 2K. The eigenfunctionψ is a Bloch eigenfunction
if it is an eigenvector of the translation operatoru → u+ 2K, i.e.

ψ(u+ 2K) = e2iKpψ(u) (3.14)

wherep, which is a function ofE, is the quasi-momentum. Now the Bloch eigenfunction
only belongs to the Bloch spectrum of the operator in (3.13) if the quasi-momentum is real.
Hence there are forbidden bands for the allowed values ofE, corresponding to gaps in the
spectrum of the operator in the Lamé equation. The result of interest is that ifg is a positive
integer then the number of gaps in the spectrum is finite, and is in fact equal tog. The
elliptic potential in (3.13) is then called ag-gap potential and the Bloch eigenfunction is a
mereomorphic function defined on a Riemann surface of genusg. Theseg-gap potentials
arise in the solution of the periodic KdV equation [12], and are associated with theg-soliton
solutions, which may be constructed using algebraic–geometric methods.

The connection between monopoles and the Lamé equation is provided by the Nahm
data. Ward has observed [14] that the Lamé equation can be written in terms of the
composition of two first-order matrix operators, the coefficients of which satisfy Nahm’s
equation (2.5). Hence to each monopole, we can associate its Nahm data, construct the
first-order matrix operators, and form their composition to arrive at a Lamé equation. In
this way we shall see how theD2 symmetric monopoles of the previous section are related
to g-gap potentials. Note that Ward considered an explicit example of the construction of a
Lamé equation from a particular solution of Nahm’s equation. However, in his example the
solution of Nahm’s equation did not satisfy the extra conditions ((ii) to (v) of the previous
section) required of the Nahm data. In particular his chosen solution of Nahm’s equation
is regular for alls ∈ [0, 2], and so does not correspond to a monopole.

From the Nahm data(T1, T2, T3) construct the following linear 2n× 2n matrix operator

1 = 1l2n
d

ds
+ iTj ⊗ σj (3.15)

where 1ln denotes then×n identity matrix andσj are the Pauli matrices. One may consider
(3.15) as a quaternionic operator, then an important cornerstone of the ADHM construction
[11, 6] is that the composition of this operator with its conjugate is real, i.e.

1?1 =
(

1ln
d2

ds2
+ TjTj

)
⊗ 1l2 (3.16)
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so that the imaginary quaternionic part is zero. This is a result of the reality properties of
the Nahm data and the fact that Nahm’s equation (2.5) is satisfied. Hence given Nahm data
it is natural to associate it with the linear matrix differential equation

1ln
d2ψ

ds2
+ TjTjψ = 0 (3.17)

for the n-vectorψ . This equation may be viewed asn copies of the Laḿe equation.
Let us now see how all this works for the Nahm data (2.7) of a charge 2g+1 monopole

with D2 symmetry. Using standard identities between Jacobi elliptic functions it is a simple
task to show that in this case

TjTj = K2ns2(Ks, k)

4
(ρ2

1 + ρ2
2 + ρ2

3)− K2

4
(k2ρ2

1 + ρ2
3). (3.18)

Now ρ2
1 +ρ2

2 +ρ2
3 is the quadratic Casimir for the sping representation of su(2) so it is equal

to −4g(g+1)1ln. Furthermore, ns(u+ iK ′, k) = ksn(u, k), whereK ′ is the complete elliptic
integral of the first kind with argument given by the complementary modulusk′ = √

1 − k2.
Using these two results, and defining the variableu = Ks − iK ′, we have that

TjTj = −K2k2g(g + 1)sn2(u, k)1ln − 1
4K

2(k2ρ2
1 + ρ2

3). (3.19)

Hence equation (3.17) becomes

1ln

(
d2ψ

du2
− g(g + 1)k2sn2(u, k)ψ

)
= −Mψ (3.20)

whereM is the constant matrix−4(k2ρ2
1 + ρ2

3). This equation isn copies of the Laḿe
equation with ag-gap elliptic potential.

In summary, we have constructed, for each positive integerg, a family of spectral curves
for aD2 symmetric charge 2g+1 monopole, each of which is reducible and is the union of
a line with g elliptic curves. We have then shown how each of these monopoles is related
to a g-gap Laḿe potential.

We now consider another example, for which it will be more convenient to write the
Lamé equation in its Weierstrass form

d2ψ

du2
− g(g + 1)℘ (u)ψ = −Eψ (3.21)

where℘(u) is the Weierstrass elliptic function satisfying

℘ ′2 = 4(℘ − e1)(℘ − e2)(℘ − e3) (3.22)

with ′ denoting differentiation with respect to the argument.
The family of monopoles we now consider were recently constructed in [9] and consist

of a charge 3-monopole which is invariant under a combined 90◦ rotation and inversion.
We computed a one-parameter family of such monopoles, which includes the axisymmetric
3-monopole and the tetrahedral 3-monopole [4, 8]. Explicitly, the family of spectral curves
is given by

η3 − 6(a2 − 4)1/3κ2ηζ 2 + 2iκ3a(ζ 5 − ζ ) = 0 (3.23)

wherea ∈ R is the parameter, andκ is a known function ofa. Special cases include the
axisymetric 3-monopole (a = 0, κ = π/(25/6

√
3)) and the tetrahedral 3-monopole (a = ±2,

κ = 0(1/6)0(1/3)/(4
√

3π)).
Now if this monopole is related to ag-gap potential, it would be useful to predict the

number of gaps directly from the spectral curve. In the previous example we saw that the
number of gapsg was equal to the number of elliptic curves whose union (together with a
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line) gave the spectral curve. The genericn-monopole spectral curve is irreducible and has
genus(n− 1)2 [6], so the 3-monopole spectral curve (3.23) has genus 4. However, it is a
particularly symmetric curve, since the 3-monopole has the symmetry groupG generated
by a reflection symmetry in thex1 = x2 plane, σ : (x1, x2, x3) → (x2, x1, x3), and by
a combined 90◦ rotation and inversionT : (x1, x2, x3) → (x2,−x1,−x3). The twisted
inversion operatorT and the reflection operatorσ act on TCP1 as

T (η, ζ ) = (−iη̄/ζ̄ 2, i/ζ̄ ) (3.24)

σ(η, ζ ) = (iη̄, iζ̄ ). (3.25)

We now show, by computing Euler characteristics, that the quotient of the spectral curve
(3.23) byG is an elliptic curve. By the Riemann–Hurwitz formula the Euler characteristic
χ of the spectral curve is related to the Euler characteristicχ̃ of the quotient curve by

χ = |G|χ̃ − b (3.26)

whereb is the total branching. The symmetry groupG acts freely except whenη = 0,
when there are fixed points atζ = 0 andζ = ∞. Each of these fixed points has a stabilizer
of order 4, hence the total branchingb = 2(4 − 1) = 6. Since the spectral curve has genus
4 we have thatχ = −6 giving

−6 = |G|χ̃ − 6 (3.27)

so thatχ̃ = 0 and the quotient curve is elliptic.
Given the previous example, where the spectral curve consisted ofg elliptic curves

and the Laḿe potential hadg gaps, the fact that the quotient curve is elliptic suggests that
perhaps this family of monopoles is related to a 1-gap potential. We now show that this is
indeed the case.

The Nahm data for this family of monopoles has the form [9]

T1 = iβ
√

2

[ 0 e−iθ 0
eiθ 0 eiθ

0 e−iθ 0

]
T2 = β

√
2

[ 0 eiθ 0
−e−iθ 0 e−iθ

0 −eiθ 0

]

T3 = 2α

[ i cosφ 0 − sinφ
0 0 0

sinφ 0 −i cosφ

]
(3.28)

whereα, β, θ, φ are some known functions ofs. To construct the associated Lamé equation
we compute that

TjTj = −4

[
α2 + β2 0 0

0 2β2 0
0 0 α2 + β2

]
= −4(α2 + β2)1l3 + 4(α2 − β2)

[ 0 0 0
0 1 0
0 0 0

]
.

(3.29)

In the above the decomposition, into a piece proportional to the identity and a remainder,
reflects the fact that we require the same Lamé potential for each copy of the Lamé equation.
Now it is clear that to obtain a Laḿe equation the combinationα2 + β2 must be (up to
a constant) given by an elliptic function, and the remainder coefficientα2 − β2 must be
constant. The explicit solution (from [9]) is

α(s) = κ

2

√
℘(κs)+ (a2 − 4)1/3 (3.30)

β(s) = κ

2

√
℘(κs)− 1

2(a
2 − 4)1/3 (3.31)
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where℘ is the Weierstrass elliptic function satisfying

℘ ′2 = 4℘3 − 3(a2 − 4)2/3℘ − 4. (3.32)

Thus

α2 + β2 = κ2

2

(
℘ + (a2 − 4)1/3

4

)
(3.33)

α2 − β2 = 3κ2

8
(a2 − 4)1/3 (3.34)

and we have the required behaviour. Note that in solving Nahm’s equation to obtain the
solutions (3.30) it is a non-trivial exercise to find the appropriate combination of functions
which obey a Weierstrass equation. However, using the relation to a Lamé potential we
have seen that the appropriate combination ofα2 + β2 emerges naturally. Finally, defining
the variableu = κs equation (3.17) becomes the 1-gap Lamé equation

1l3

(
d2ψ

du2
− 2℘(u)ψ

)
= −Mψ (3.35)

whereM = 1
2(a

2 − 4)1/3diag(−1, 2,−1) is a constant matrix.
This example suggests that constructing the corresponding Lamé equation for a

monopole may be of use in solving Nahm’s equation, since it could naturally lead to a
simplifying choice of variable combinations. As an example we consider the Nahm data
for a charge 3-monopole with cyclicC3 symmetry. It is known that the Nahm data has the
form

T1 + iT2 =
[ 0 0 α2

α3 0 0
0 α1 0

]
T3 = i

[
d1 0 0
0 d2 0
0 0 d3

]
(3.36)

and Nahm’s equation is equivalent to the 3-particle Toda chain [7]. However, despite the
fact that these equations are a much-studied integrable system, it has not as yet proved
tractable in this case to find the explicit solution of Nahm’s equation which satisfies all the
required boundary conditions.

With a view to constructing the associated Lamé equation we compute that

TjTj = −1

2

[ 2d2
1 + α2

2 + α2
3 0 0

0 2d2
2 + α2

1 + α2
3 0

0 0 2d2
3 + α2

1 + α2
2

]
. (3.37)

We can make this proportional to the identity matrix by the obvious choice 2d2
i = α2

i ,
i = 1, 2, 3. This reduction simplifies the equations sufficiently to be integrated explicitly,
in terms of an elliptic function, and results in the spectral curve

η3 + i0(1/6)30(1/3)3/(π3/2338
√

2)(ζ 6 + i5
√

2ζ 3 + 1) = 0. (3.38)

It can be shown that this is the spectral curve of the tetrahedral 3-monopole [4], after a
rotation so that the tetrahedral monopole has a cyclicC3 symmetry around thex3-axis.
So, by considering the associated Lamé equation we have been lead to a simplified case.
Perhaps other cases may be constructed in a similar fashion.
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4. Conclusion

A new family of spectral curves, for odd charge monopoles with dihedral symmetry, has
been computed and a relation with finite-gap Lamé potentials investigated. It would be
interesting to see if the connection between monopoles andg-gap potentials could be made
more formal. In particularg-gap potentials can be associated, via the Novikov equation
[13, 12], to algebraic curves. Perhaps a link between these curves and the spectral curves
of the monopole could be found.

Note that in general the problem of determining which monopoles correspond to finite-
gap potentials, and conversely which finite-gap potentials can arise, is an open problem.

Another aspect to investigate is the role that could be played by the Lamé polynomials
[3] within the ADHMN construction.

Finally, the simplest example studied in this paper, that of three monopoles withD2

symmetry, can be shown to be a totally geodesic submanifold of the 3-monopole moduli
space. This work will be presented elsewhere [10].
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